Embeddings into Orlicz Spaces for Functions from Unbounded Irregular Domains
نویسندگان
چکیده
منابع مشابه
Optimal Domain Spaces in Orlicz-sobolev Embeddings
We deal with Orlicz-Sobolev embeddings in open subsets of R. A necessary and sufficient condition is established for the existence of an optimal, i.e. largest possible, Orlicz-Sobolev space continuously embedded into a given Orlicz space. Moreover, the optimal Orlicz-Sobolev space is exhibited whenever it exists. Parallel questions are addressed for Orlicz-Sobolev embeddings into Orlicz spaces ...
متن کاملOn difference sequence spaces defined by Orlicz functions without convexity
In this paper, we first define spaces of single difference sequences defined by a sequence of Orlicz functions without convexity and investigate their properties. Then we extend this idea to spaces of double sequences and present a new matrix theoretic approach construction of such double sequence spaces.
متن کاملdouble sequence spaces defined by orlicz functions
in this paper we introduce some new double sequence spaces using the orlicz function andexamine some properties of the resulting sequence spaces.
متن کاملEmbedding Orlicz Sequence Spaces into C(α)
Let M be a non-degenerate Orlicz function such that there exist ǫ > 0 and 0 < s < 1 with ∑ ∞ i=1 M(ǫs)/M(s) < ∞. It is shown that the Orlicz sequence space hM is isomorphic to a subspace of C(ω). It is also shown that for any non-degenerate Orlicz function M , hM does not embed into C(α) for any α < ω .
متن کاملEquivariant Embeddings of Trees into Hyperbolic Spaces
For every cardinal α ≥ 2 there are three complete constant curvature model manifolds of Hilbert dimension α: the sphere S, the Euclidean space E and the hyperbolic space H. Studying isometric actions on these spaces corresponds in the first case to studying orthogonal representations and in the second case to studying cohomology in degree one with orthogonal representations as coefficients. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Analysis and Operator Theory
سال: 2019
ISSN: 1661-8254,1661-8262
DOI: 10.1007/s11785-019-00898-y